
Intro R for BMS Bachelor programs

OMD staff

version 2021-12-31

1

Contents
Introduction 4

How to use this document? . 4

1. Introducing R and RStudio 5
What is R? . 5
What is RStudio? . 5
Why R and RStudio at BMS? . 5
Installing R and RStudio on your laptop . 5
How to learn R? . 5
Terminology: working directory, console, script and more . 6
Data frames and data types . 7
Operators in R . 8
Some notes on writing readable scripts . 8
Downloading and activating R Packages . 9
R packages to be used at BMS . 9
Datasets in R-packages . 10
The ‘pipe’ operator . 10

2. Handling data files 12
Importing data: from .csv, .sav and other formats to R data frames 12
Working with labelled data (mainly SPSS and SAV files) . 12
Creating data frames from scratch . 12
View data frames and parts of data frames: view, colnames and select 13
Creating subsets of a data frame: select, filter and the use the assignment operator <- 13
Dealing with missing data: na_if, is.na, na.rm, na.omit . 14
Renaming a variable in a data frame: rename . 15
Adding a new variable to an existing data frame: mutate . 15
Making sure variables have the correct type: from character to factor and from factor to ordered

factor . 15
Adding a new variable from another datafile to an existing data frame: leftjoin 16
Adding new data (observations) to an existing data file: add_row 16
Recoding and changing variables in an existing data frame: recode and case_when 16

Recoding single values of a variable into different values in a new variable 16
Recoding a range of values of a variable into different values in a new variable: case_when . . 17

Restructuring data files: creating long and broad format data frames using pivot_longer and
pivot_wider . 17

3. Univariate data analysis and data visualization 19
Summarizing numerical variables: mean, median, variation and standard deviation 19
Frequency tables with janitor: tabyl . 19
Univariate graphs: creating bar charts, box plots and histograms using ggplot 20

4. Bivariate data analysis and bivariate data vizualisation 21
Contingency tables (a.k.a. crosstabs) with tabyl . 21
Box plots for different groups using ggplot . 21
Scatterplots with ggplot . 21
Faceting . 22

5. Multivariate data analysis 23
3-way contingency tables with tabyl . 23
Linear models . 23
linear mixed models . 24
logistic regression . 24

2

Nonparametric tests . 25

6. Psychometric analyses 26
Factor analysis . 26
Classical Test Theory analyses . 27
Item Response Theory models . 27

3

Introduction
This document describes how bachelor students in BMS programs will use the program language R in the
courses for Research Methods and Statistics (and beyond). The document will be available at all time when
making assignments and when making exams in which R is used. The document will be updated when the
staff discovers problems in the way students deal with R (check the version date on top of this document).

How to use this document?
There is no need to learn this document ‘by heart’. It is mainly a reference guide. Read until “Installing R
and RStudio on your laptop” once before doing anything else with R. Then install R and Rstudio. After that
read the rest of “1. Introducing R and RStudio” once. After this make some of the assignments we created.
Use the materials in this reference guide, in case you get stuck. After doing three of four R assignments,
read the first chapter again, and skim through the remainder of the document. Before you start using R in
other courses, read through the document again, to re-familiarize yourself with R.

4

1. Introducing R and RStudio
What is R?
R is a software environment in which you can analyze data by typing instructions (programming). In the
field of behavioral and social sciences, researchers and teachers are increasingly working with R instead of
programs like STATA, SAS, SPSS and EXCEL, because R has some advantages compared to these programs:

• it is free, so you can also use it after you finished your studies;
• it is open-source and researchers all over the world write code that is transparent and which can be

used for free;
• data analysis and data visualization possibilities in R are almost endless;
• the language is extremely flexible.

R allows you to manage data sets, to change data in order to facilitate analysis, to analyze data and to
visualize data. R also allows you to integrate data in text files, which reduces the amount of ‘copy-pasting’
and reduces the number of mistakes made in this process, thus improving the reproducibility of research.

What is RStudio?
RStudio is a ‘shell’ designed to help you to be more productive with R. RStudio is an Integrated Development
Environment (IDE) that helps you develop programs (and scripts) in R. RStudio has a set of integrated tools
that are helpful when analyzing and visualizing your data. More information about RStudio can be found
here: https://rstudio.com/products/rstudio/features/. You will probably only encounter R via RStudio.

Why R and RStudio at BMS?
At BMS we think students in the behavioral and social sciences should have a clear understanding of ‘data’
and using R and RStudio will give you both a clear understanding of data and a flexible and transparent
way to handle these data. R also allows us to teach statistics in a flexible way, adding new ideas (like ‘big
data analysis’) to our curriculum more easily.

Installing R and RStudio on your laptop
For most purposes, installing R and RStudio on your laptop is straightforward. For R go to

• https://cran.uni-muenster.de

For R studio go to:

• https://www.rstudio.com/products/rstudio/download/

and select the free version.

How to learn R?
Although we will offer you a lot of materials to learn the R basics, keep in mind that for learning R even
better you need to find your way on the web to learn additional procedures and to practice even more. How?

Some suggestions:

• use a search engine (like Google) to ask questions like “how do I enter data into R?”;
• use stackoverflow (https://stackoverflow.com) to check out answers to similar questions;
• find your own pet project (data with your running times, for example, or gpx files, or COVID-19 data);
• read blogs in which data scientists show what can be done with R.

A nice feature in R is the help function. If you need help on a function, just type a ? in front of a function.
If you type ?? in front of the function, you will even get help from all over the web.

5

https://rstudio.com/products/rstudio/features/
https://cran.uni-muenster.de
https://www.rstudio.com/products/rstudio/download/
https://stackoverflow.com

?tidyverse
??tidyverse

The answer to this question can be found in the right side lower corner of the RStudio panel.

Terminology: working directory, console, script and more
Learning R includes learning a lot of new words like ‘working directory’, ‘script’ and ‘console’. In this section
some of the most commonly used terms will be introduced. Although it might be hard to understand the
terms completely by reading the explanations below while not yet working in R, you will see that in a few
weeks you will understand exactly what is meant with the terms. Reread this document a few times after
starting working with R.

The working directory on your laptop or pc is the folder where all kinds of data, output (including pictures),
and scripts are stored (as files), so you can quickly find them back later. It is wise to create a working
directory for each separate course or data project and to tell R you will use that directory for this specific
project.
setwd("[...]")

The [...] has to be replaced by something applicable to your computer.

setwd("/Volumes/myname/Userdata/My Documents/Documenten/Research/2020_Local_elections")

The current working directory (in case you forget) can be found with the
command

getwd()

Make sure you can find the path of a working directory in your mac or pc: - on Mac, in Finder, the small
‘radar’ on top allows you to copy the location as ‘pathname’ - in Windows, in the File Explorer, select View
in the toolbar, -> Options, select Change folder and search options, to open the Folder Options dialogue
box, Click View to open the View tab. In Advanced settings, add a check mark for Display the full path in
the title bar, Click Apply, Click OK to close the dialogue box.

A script is a set of commands. A command meaning ‘read in my data’ or ‘create a nice a frequency table’.
Commands are preferably combined with some # comments explaining what happens in the command lines.
In order to distinguish between command lines and comments, comments are preceded by the # sign.

Use - - - - - to break up your script into easily readable chunks.

If you want to run a line of the script, you move the cursor to the respective line and you use ctrl+enter
(cmd+enter on a Mac). The instruction will then then automatically move to the R Console and the cursor
in the script automatically jumps to the next line.

The console panel (at the bottom in RStudio, with the prompt “>”) can be used to directly type commands.
For example, when using R as a simple calculator you can just type in the numbers in the console.
adding 1 + 1
> 1 + 1
[1] 2

Objects, including imported data, are stored in the global environment. When you create new objects, these
objects are stored in the global environment too. For example, if you create a frequency table, you can store
the table (the object) in the global environment. The object can always be called back later in the analysis.
The global environment can be saved separately and called later, although for many practical purposes it
is sufficient to create a global environment anew, by using the script (the set of commands and comments)

6

which created that environment in the first place. The global environment can be found on the right upper
side of RStudio.

Data sets, numbers, and output can be stored as objects in the global environment, using the (left) assignment
operator “<-”.1 An object can be a lot of things. For example, if you use R to create a boxplot, the picture
of the boxplot can be stored as an object, to be called later when needed.

When naming objects, use only lowercase letters, numbers, and _. Use underscores (_) to separate words
within a name. For example, only use names like ‘data_dpes_2021’, of ‘freq_tab_001’.
for example, to use the 10 cases throughout a script, you can define the
object 'n' to '10'
n <- 10

or to create a simple vector of numbers, you can write ...
dataset1 <- c(3, 2, 1, 4, 9, 6, 7, 100)

calling this object in a script or in the console gives the contents of the
thus created object.
dataset1

[1] 3 2 1 4 9 6 7 100
this give the following output in the console:

Functions in R are ‘commands’ telling R what to do: they are ‘do this’ statements. R has a lot of those,
and users are adding more every day. Functions end with parentheses: “()”.2 For example:
The command head() is 'Show me the first part (the head) of a data set'. In
this example the called data set is an object called dataset1.

head(dataset1)

After installing the 'tidyverse' package (a package we will use at the UT,
the word **package** will be explained below) and the associated pipe command
(%>%), use ...

dataset1 %>%
head()

Data frames and data types
Data frames in R are matrices (numbers and words stored in rows and columns) in which the columns are
variables and the rows are units of observation (observations). Sometimes this data frame is called a data
matrix, but in the R language a data matrix is a data frame with only numbers, not with strings (text) or
other types of variables. One single column (or: a variable) with numbers or with strings is called a vector.3
Sometimes objects are not just data frames, but a data frame and something more. These objects are called
lists.

For reasons beyond the scope of this short introduction, some functions only work with data frames (even if
they contain only numbers), not with matrices. In these cases you have to explicitly tell R your matrix is a
data frame.

1To be fair, also “=” will work, but most people now use the “<-” assignment operator
2The magrittr package (included in the tidyverse package) allows you to omit parentheses () on functions that don’t have

arguments. Avoid this feature, because it may be confusing. Be consistent in that functions always have parentheses, objects
don’t.

3A vector can contain numbers (1, 1.5, 3.333 etc.), or strings (words), or factors (to be explained later), or integers (1,2,3,4,5),
etc. A single vector cannot have different types of data.

7

Variables in a data frame have a name (like ‘x’ or ‘gender’). These can be be called directly using the ‘$’
sign. So ‘data$gender’ refers to the column/variable gender in the data frame. More generally, the ‘$’ sign
refers to a ‘component’ of an object. If you store output as an object to the global environment, you can
call a specific element of that output using the ‘$’ sign.

There are different types of variables in a vector/data frame. The most important are a variable containing:

• logical values (True or False) (used for some dummy variables);
• a factor consisting of a limited set of attributes (‘low’, ‘middle’ and ‘high’ for example) (used for

nominal and ordinal variables). A factor can also be stored as an ‘ordered factor’ and is than not
merely ‘nominal’ but ‘ordinal’.

• integer values (-1, 0, 1, 2, 3 etc) (mainly used for ordinal variables and for count variables);
• real values (1.001, 1.002, 10000) (used for interval and ratio variables);
• characters/ words (‘male’, ‘female’) (if these variables are used for dummies (like in ‘male’ / ‘female’)

and for nominal variables, you have to change them to (ordered) ‘factor’ variables).

Operators in R
The most frequently used operators used in R, beyond the well bnown - (Minus), + (Plus), * (Multiplication),
/ (Division) and <- (the Left assignment operator), are:

operator meaning
ˆ Exponentiation
! Not
> Greater than
== Equal to not simply ‘=’
>= Greater than or equal to, binary
<= Less than or equal to, binary
: Sequence (in model formulae: interaction)
$ List subset, including a column in a data frame

Some notes on writing readable scripts
Commands can all be put in the console (the one at the bottom-left of RStudio, starting with the “>”). But
since you often want to redo the same thing (trying and tweaking), we urge you to store the commands in a
script. Open a new script in RStudio (file -> new file -> R script). This will appear in the upper-left pane.
Type all commands in the script. This script can be stored (extension is .R) and is basically a .txt file.

When writing a script, start with a title, preceded with the #, because it is not a command, on top, for
example:
This script is for computing the mean maximum temperature for several days

This vector includes the highest temperatures recorded on several days
temperature <- c(19, 17, 20, 20, 13, 13, 15, 17)

temperature %>%
mean() # to compute the mean maximum temperature

When writing commands in the script, always put a space after a comma, and never before a comma, just
like in regular English. Never put spaces inside or outside parentheses for regular function calls. Most
infix operators (==, +, -, <-, etc.) should always be surrounded by spaces. The pipe operator that was
used in the example above, is explained later in this document. For now, it is important to know that when
indenting after a pipe >%> operator, you need to use two spaces (you can automatically set this in RStudio’s
preferences (RStudio / Preferences / Code/ Insert spaces for tab / tab width = 2). Use " for quoting text.

8

Only use ’ when the text already contains double quotes and no single quotes. If the arguments to a function
don’t all fit on one line (of max 80 characters), put each argument on its own line and indent with two
spaces.

Downloading and activating R Packages
R and RStudio can be used more efficiently, by ‘add ons’ called packages. These packages simplify pro-
gramming in R as they include new functions that you can use. Below, you will find a list of packages to
be downloaded for the various courses at BMS. After downloading (= installing) the package, there is no
need to do that every time you are using R, although it may be wise to sometimes check for updates. After
installing and opening R and RStudio, you can install packages using a command in either the console or in
a script.
Installing the packages 'foreign' and 'tidyverse' (both to be introduced
later) is done with the following command in R:

install.packages("foreign", "tidyverse")

Downloading (= installing) a package is not the same as ‘calling’ that package for usage in R: packages are
not automatically opened when you are using R and RStudio. And that is a good thing: packages can use
conflicting short cuts (using functions with the same name, but with very different outcomes). Therefore,
each time you are using a specific package you have to load that package into the library (aka ‘activate’). A
script therefore often starts with ‘calling’ the relevant packages for that script.
Loading the packages into the library is done with commands like these:

library(foreign)
library(tidyverse)

R packages to be used at BMS
A lot of statistical analyses can be done by using ‘base R’ and its associated functions, but for some more
specialized analyses we will use specialized packages.

Since the number of packages is huge4, we have decided to use only a limited number of packages at BMS.
The use of R at BMS will be based on the tidyverse5. We will therefore mainly use packages belonging to
the tidyverse (that are installed and loaded when installing and loading the tidyverse package).6 We will
also use some other packages.

Here is an overview of the packages you will be using:

• ggplot2 to visualize your data (part of the tidyverse core);
• dplyr and tidyr to change data, and to make sure that each variable is in a column, each observation

is a row and each value is a cell (both part of the tidyverse core);
• readr to import .csv data (part of the tidyverse core);
• readxl to import .xls and .xlsx sheets;
• foreign to import SPSS, Stata, and SAS data;
• magrittr to provide the pipe %>% operator, used throughout the tidyverse. The pipe operator is,

however, also contained in the tidyverse core. The pipe operator will be explained later;
• janitor to create frequency tables and cross tabulations (not part of the tidyverse, but aligned);
• lme4 for the linear mixed model;
• psych for psychometric analysis, including scale construction and factor analysis;
4click here to see all available packages
5click here to see the tidyverse style guide
6What is a bit confusing, is that the tidyverse is both a set of packages, and a ‘programming philosophy’. There are many

more packages adhering to that tidyverse philosophy and they work well with the tidyverse core. When installing the ‘tidyverse’
you only install the core tidyverse packages.

9

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://style.tidyverse.org/

• lmerTest to approximate p-values;
• broom to use a tidy() function, which may come handy when doing statistical analysis;
• modelr to make plots with the residuals and/or the predicted values (this package will soon be replaced

by a new set of packages called ‘tidymodels’).

At the beginning of a meeting or course we will tell you which packages to download and call.

Datasets in R-packages
Apart from a set of commands, most packages also contain data sets, to enable easy illustrations of what
packages can do.
to see which datasets are available in the packages loaded in the library,
use:

data()

to see all 'available' data in installed packages on your computer, use:

data(package = .packages(all.available = TRUE))

sometimes it makes sense to put a data set in the Global Environment:

gss_cat <- gss_cat # loaded in the package forcats, which is part of the core tidyverse (see below)

The ‘pipe’ operator
Some packages add additional operators to the set of base R operators. The ‘pipe’ operator is the most
important one.7 We urge you to use the ‘pipe’ function as much as possible. An example will show why.

Suppose we wanted to create a new object with some (only some) gss_cat data from 2000 after we imported
these data as an object into R. In this data set all rows are observations. In this case individuals: each row
is an individual in a specific year. Religion and partyid are variables in this dataset. Suppose we want to
select only data from 2000, and focus only on age and religion, and we want to store these data in a new
(smaller) object called ‘gss_cat_small’. We could use:
gss_cat <- gss_cat # storing the dataset in the globval environment
gss_cat_small <- filter(select(gss_cat, year, age, relig), year == 2000) # filtering variables and selecting cases

This is called a nested command (with the functions ‘filter’ and ‘select’). A nested command is often difficult
to understand. Much simpler is:
gss_cat_small <- gss_cat %>%

select(gss_cat, year, age, relig) %>%
filter(year == 2000)

This command means: you have a big data frame (gss_cat, which is an easily called object in the package),
you select some variables from this data frame, and then you filter those cases (from a specific year).

When writing code, use the pipe %>% operator as much as possible. There is special hotkey in RStudio for
the pipe operator: Ctrl+Shift+M (Windows & Linux), Cmd+Shift+M (Mac).

The rest of the document will be made available as a reference for what we expect you to know in various
phases of your study program. Especially this second half of the document will be updated regularly. We
want to stick to about 20 to 25 pages. Suggestions for improvement are welcome.

7This is one of the pipe operators which are part of the magrittr package (which is part of tidyverse, but not part of the
core), it is so important that this pipe operator is also contained in other tidyverse packages. You can use it, once the tidyverse
package is ‘called’.

10

Please note: some commands below work without additional packages (in ‘base R’), however throughout
the remainder of this document we assume you have installed the (core) tidyverse packages. For additional
commands we will tell which R-packages you need.

11

2. Handling data files
Importing data: from .csv, .sav and other formats to R data frames
To import a data set, you first need to activate the correct package (these are foreign (for SPSS files),
readr or readxl (for excel files), depending on the type of data you want to import). Next to that, you
need to know the location of the data set on your computer. Suppose the location of your data file called
‘dataset2’ is: “C:/My Documents”. The data set can be loaded into the global environment with the following
command:
set working directory to the correct folder and put all files to be imported
in that folder
install.packages("tidyverse", "foreign", "readr", "readxl") # you do this only once
library("tidyverse", "foreign", "readr", "readxl") #you only need to call packages you will actually use, but you need to do that every time after (re)starting R

setwd("C:/My Documents") # setting the working directory

dataset2 <- read.spss("dataset2.sav", to.data.frame = TRUE) # load an spss file with the package 'foreign' as data frame.

OR, if the file is a csv file ...

load a csv data file, separated by comma's, with the package 'readr'
dataset2 <- read.csv("dataset2.csv", sep = ",")

Working with labelled data (mainly SPSS and SAV files)
Sometimes imported datasets are ‘labeled’. For example, the variable ‘gender’ is stored as a series of 1’s
and 2’s and a label is added for the variable (‘gender as derived from the sampling frame’, this is called the
variable label) and for the values (1 means ‘woman’ and 2 means ‘man’, the so called ‘value labels’). The
labels are attributes of a data frame.

To inspect the labels in a dataframe:
for the variable label
data$variable %>%

attr("label")

for the value labels
data$variable %>%

attr("labels")

Creating data frames from scratch
Creating your own data set can be done in many ways. We mention two:

(1) typing in data:
#creating a data frame by variable

age <- c(44, 30, 20, 67) %>% as.integer()
gender <- c("male", "female", "male", "female") %>% as.factor()
length <- c(1.67, 1.70, 1.80, 1.81) %>% as.numeric()
membership <- c("T", "F", "T", "T") %>% as.logical()

merge the variables
dataset3 <- data.frame(age, gender, length, membership)

12

(2) generating random data: If you do not have actual data, but want to show something in R, you can
randomly select observations from a distribution.

creating a data frame with a random variable based on the normal
distribution, assumed mean of the normal distribution is 50, sd is 20, with
100 units.

n <- 100
dataset4 <- rnorm(n, 50, 20) %>%

as.data.frame()

View data frames and parts of data frames: view, colnames and select
To illustrate the commands used below, we will use the data set gss_cat (from the tidyverse package forcats).
This is a sample of data from the general social survey in the US. It contains the variables: year (year of
survey, 2000–2014); age (Maximum age truncated to 89); marital (marital status); race (race); rincome
(reported income); partyid (party affiliation); relig (religion); denom (denomination); tvhours (hours per
day watching tv).

Suppose we have a data frame and you want to inspect it.
View the data from the data set dataset4 in a spreadsheet.
gss_cat %>%

View()

Get a quick overview of the types of data in your matrix and their names
gss_cat %>%

str()

Only get the column names of a data set
gss_cat %>%

colnames()

View the data of a particular column, say column 2 (the second variable in
the data frame)
gss_cat %>%

select(2)

View the data of a particular set of variables
gss_cat %>%

select(year, marital, race)

View the data set of a particular set of variables, in which one is left out
gss_cat %>%

select(1:5, -3)

View part of the data set in a spreadsheet
gss_cat %>%

select(1:5, -3) %>%
View()

Creating subsets of a data frame: select, filter and the use the assignment oper-
ator <-
Selected variables can also be stored as a separate object in the global environment.

13

Make a new data frame with only the items (variables) that you want:
gss_cat_social <- gss_cat %>%

select(1:5, 7, 8)

Make a new data frame with only observations from 2000:
gss_cat_2000 <- gss_cat %>%

filter(year == 2000)

Make a new data frame with observations from 2002 and later:
gss_cat_2002plus <- gss_cat %>%

filter(year >= 2002)

Dealing with missing data: na_if, is.na, na.rm, na.omit
R uses only one way of declaring a specific observation as missing: NA (Not Available). If your data set does
include missings, but the missings are coded with a number (for example: 99), you need to replace these
values before analyzing the data.
To change other values (here: the word 'Don't know)' to NA, use na_if()

gss_cat <- gss_cat %>%
mutate(relig = na_if(relig, "Don't know"))

in the data set gss_cat, replace the existing variable relig (which contains contains cases with the word 'Don't know') with a new variable relig, in which this group is declared missing (and gets an NA).

There are several ways to find out how many missings are included in the data. Also, there are multiple
ways to deal with these missings (pairwise deletion versus listwise deletion).
To see which variables in the data file called 'mydata' have missings use:
summary(gss_cat)

Or use 'is.na' to detect the number of missing values in a specific column
(the 'religion' variable).
gss_cat$relig %>%

is.na() %>%
sum()

Pairwise deletion of cases (exclude cases that have a missing value on a
variable, but keep them when working with other variables): 'na.rm'
mean(gss_cat$tvhours, na.rm = TRUE)

Listwise deletion of cases (drop cases that have a missing value on any of
the variables used): 'na.omit'
gss_cat_no_missings <- na.omit(gss_cat)

Make a new data frame only containing units without a missing value on the
variable 'relig'. Please note that you now drop many cases ONLY because this
variable is missing.
gss_cat_no_missings_on_relig <- gss_cat %>%

filter(!is.na(relig))

Please note that in R we can use the '!' sign, to say 'not'.

14

Renaming a variable in a data frame: rename

Change old name 'relig' to the new variable name 'religion' (new = old)

gss_cat <- gss_cat %>%
rename(religion = relig)

Adding a new variable to an existing data frame: mutate
Adding a variable to the data set can be done with mutate().
Adding a standardized variable with mutate()
gss_cat <- gss_cat %>%

mutate(ztvhours = (tvhours - mean(tvhours))/sd(tvhours))

Creating an index (a combination of item scores) and adding that index to the
data frame can also be done with mutate()
dataset5 <- dataset5 %>%

mutate(index = item3 + item4 + item4)

OR

(assuming that item3, item4 and item5 are in columns 3, 4 and 5) use:
dataset5 <- dataset5 %>%

mutate(index = rowSums(.[3:5]))

If you want to sum values of a lot of columns and ignore the missings, use:
dataset5 <- dataset5 %>%

mutate(sum = rowSums(.[c(1:4, 7:20, 22)], na.rm = TRUE))
The 'c' in this command stands for 'combine' and is part of base R.

Making sure variables have the correct type: from character to factor and from
factor to ordered factor
If you have a character variable with the ‘words’ ‘man’ and ‘women’ you probably want to treat this variable as
a factor, not merely as a column of words. And if the factor in your data frame has three ‘values’/‘attributes’
(low, medium and high), you have to make sure this variable is stored as an ‘ordered factor’.
because gss_cat only has numerical variables and factors, we first change a
factor to a character variable
gss_cat <- gss_cat %>%

mutate(marital_char = as.character(marital))

changing text back to factor
gss_cat <- gss_cat %>%

mutate(marital_factor = as.factor(marital_char))

changing factor to ordered factor
gss_cat <- gss_cat %>%

mutate(marital_ord = factor(marital_factor, order = TRUE, levels = c("Never married",
"Married", "Divorced", "Separated", "Widowed", "No answer")))

In this example, we have put the brackets in a way that avoids omitting a
bracket (which happens a LOT!)

15

Adding a new variable from another datafile to an existing data frame: leftjoin
Suppose you have a data file with a large number of countries (stored as a word) over a large number of
years (every ‘country x year’ is one observation). You want to add the continents of these countries to the
data set. You have another data set with just the countries (stored as the same words as in the other data
set) and the continents.
gapm1945to2020 is the original dataset gapmcountries is the set with
countries and continents Both datasets are loaded in the global environment
country in both data sets is called 'geo' and both have the same values (the
same words)

gapm1945joined <- gapm1945to2020 %>%
left_join(gapmcountries, by = "geo")

Adding new data (observations) to an existing data file: add_row
Sometimes, you want to add data to an existing data file. For this, you can use the function add_row().
With .before and .after, you can specify where new cases should be added.
to use the add_row() function, the tidyverse packages should be installed and loaded
all variable names should be included in the command

data will be added after the last case
dataset1 <- dataset1 %>%

add_row(., Variable1 = 202, Variable2 = 3, Variable3 = 1)

Note the very confusing ".,", which is sometimes used when combining base R commands with tidyverse commands. This case it means something like "we are really using dataset1".

You can also specify where to add the new case (for example: before case 51)
dataset1 <- dataset1 %>%

add_row(., Variable1 = 202, Variable2 = 3, Variable3 = 1, .before = 51)

Recoding and changing variables in an existing data frame: recode and
case_when
Recoding single values of a variable into different values in a new variable

Sometimes you want to change the values of a variable. Usually it is best to simply make a new variable using
mutate (see above). Let us say you have items x10 and x11 of type integer (meaning, only the numbers -1,
0, 1, 2 etc.) that are scored from 1 to 3 and you’d like to change number 3 into integers 1, and number
1 into integer 3 (reverse coding, 2 will stay 2). We then make new variables of type integer x10_R and
x11_R in the following way. Note that if you use the L, your new data type will be integer (which saves
memory). You leave them out if you want the data type to be numeric.
keep in mind R uses in most cases (but NOT with rename, which is very
confusing) the 'OLD is now NEW' order of values.

df_psychology <- df_psychology %>%
mutate(x10_R = recode(x10, `1` = 3L, `2` = 2L, `3` = 1L), x11_R = recode(x11,

`1` = 3L, `2` = 2L, `3` = 1L))

it is often simpler to temporarily ignore the fact a variable is an integer,
and to simply add the 'as.integer()' command later.

It is also possible to recode character/factor variables.

16

data <- data %>%
mutate(var1b = recode(var1a, word = "newword"), var2b = recode(var1b, word2 = "anothernewword"))

The code above does not seem to work for all data files. When you for example imported an SPSS data file
with labels, another method should be used.
for variable x3: 1 -> 0, 2 -> 1
use: value - 1

data_new <- data_new %>%
mutate(x3_R = x3 -1)

for variable x1 and x2: 1 -> 3, 2 -> 2, 3 -> 1
use: value * (-1) + 4
data_new <- data_new %>%

mutate(
x1_R = x1 * (-1) + 4,
x2_R = x2 * (-1) + 4

)

again, make sure the data are now stored as integers.

Recoding a range of values of a variable into different values in a new variable: case_when

When you would like to recode an entire range of values of a variable into the same different value in a
different variable, case_when() can be used.
recode values of the variable "old_var":
lower than 20 into 1, 20 - 39 into 2, 40 or higher into 3

dataset1 <- dataset1 %>%
mutate(new_var = case_when(

old_var < 20 ~ 1,
old_var >= 20 & old_var < 40 ~ 2,

old_var >= 40 ~ 3
)

)

Restructuring data files: creating long and broad format data frames using
pivot_longer and pivot_wider
Sometimes data are stored in a relatively wide format (a lot of variables). For example, all the countries
are rows and there is a variable ‘unemployment_2000’ and a variable ‘unemployment_2001’ etc. . . In order
to change wide format data into long format data, in which there are three variables only: country_name,
year, level of unemployment, use pivot_longer().
To create 1 new variable containing the names of 4 variables (Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width) and 1 variable with the scores:

iris %>%
pivot_longer(cols = c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),

names_to = "variable", values_to = "score", values_drop_na = TRUE)

If you want to restructure variables beginning with the same name (for
example variables for each week, starting with 'wk'), you can use

17

starts_with()

billboardlong %>%
pivot_longer(cols = starts_with("wk"), names_to = "week", values_to = "rank",

values_drop_na = TRUE)

And sometimes you want to go from long format to wide format. Use pivot_wider().
#using the same example
billboardwide %>%

pivot_wider(names_from = week,
values_from = rank)

18

3. Univariate data analysis and data visualization
A variable can be described with statistics like the mode, mean, median, variance and standard deviation.
Also, it is interesting to visualize a variable using a plot.

Summarizing numerical variables: mean, median, variation and standard devia-
tion
Below you will see several examples of obtaining descriptive statistics for items in a data set called data_new.
To summarise some main characteristics of one numerical item (called Item1):
data_new %>%

summarise(mean = mean(Item1), sd = sd(Item1), var = var(Item1), minimum = min(Item1),
maximum = max(Item1))

You can also ask for only one of the statistics.

To summarize the main characteristics (mean, median, minimum, maximum, Q1, Q3
and number of missings) of multiple variables (in this example: the first 10
variables) in the data set:
data_new %>%

select(1:10) %>%
summary()

To compute a certain statistic for the first 10 variables in the data set,
you can also use the map() function:

data_new %>%
select(1:10) %>%
map(var)

instead of var, you can also use mean, sd, or other functions

Frequency tables with janitor: tabyl
The tabyl() function from the janitor package is a way to get frequency tables. tabyl() is tidyverse-aligned
and is primarily built upon the dplyr and tidyr packages.
Make sure 'janitor' in loaded into the library

Create a frequency table
gss_cat %>%

tabyl(race)

Create frequency tables for all variables of a data set:
gss_cat %>%

map(tabyl)

If the values are in alphabetical, rather than in a meaningful order, make
sure the variable is stored as an 'ordered factor' (see above).

The frequency table can be made nicer using the adorn commands, for example:
gss_cat %>%

tabyl(marital) %>%
adorn_totals("row") %>%
adorn_pct_formatting()

19

Univariate graphs: creating bar charts, box plots and histograms using ggplot
We will use the package ggplot2 (part of the core tidyverse) for creating visualizations. The function ggplot
is extremely flexible and there is an almost infinite number of ways to display your data.

The basic idea of ggplot commands is that you (1) have a data frame, pipe (%>%) that into a (2) ggplot(),
add a (3) geom_. . . () to select the type of display you want to have, and (4) use aesthetics (aes()) to select
the variable(s) you will use from that data frame.

There are more ‘layers’ in a ggplot, but these are the most important.

For example, you can use a bar chart to visualize a categorical (= nominal) variable.
creating a basic bar chart with the nominal variable item 1
gss_cat %>%

ggplot() +
geom_bar(aes(x = marital))

to create a box plot for the ratio variable tvhours in gss_cat
(please note that x = and y = in the aesthetics tilt the picture)

gss_cat %>%
ggplot() +
geom_boxplot(aes(y = tvhours))

to create a histogram for the ratio variable tvhours in gss_cat
gss_cat %>%

ggplot() +
geom_histogram(aes(x = tvhours))

there are many more geom's to use, but we will focus on these in univariate analysis. But this is definitely a topic you can explore further. Think for example about changing the colors of the bars in a barchart, adding better titles or adding annotations.

Note 1: although we generally recommend using the pipe operator like this, if you start visualizing data from different objects in one plot, it may be wise to put the data inside the ggplot:

ggplot(gss_cat) +
geom_histogram(aes(x = tvhours))

Note 2: the aesthetics are put in the geom. However, if you combine different geom's (scatter and line) displaying the same variables, it is more efficient, to but the aesthetics in the general ggplot command too:

ggplot(gss_cat, aes(x = tvhours)) +
geom_histogram()

20

4. Bivariate data analysis and bivariate data vizualisation
Contingency tables (a.k.a. crosstabs) with tabyl
Use the tabyl() function from the janitor package. The first line creates the table. The rest formats the
table (giving it a title, adding totals etc. . .).
library(janitor)
mtcars %>%

tabyl(am, gear, show_na = FALSE) %>%
adorn_title("combined") %>% #both var names in the title
adorn_totals("col") %>% #column totals
adorn_totals("row") %>% #row totals
adorn_percentages("col") %>% #columnwise, rowwise (row), or total percentages (all)
adorn_pct_formatting(digits = 1) %>%
adorn_ns() #show the numbers of cases

Box plots for different groups using ggplot
For a boxplot use geom_boxplot():
A boxplot comparing different species is having two variables in the aesthetics

iris %>%
ggplot(aes(x = Species, y = Petal.Width)) +
geom_boxplot()

Scatterplots with ggplot
A scatter plot in the ggplot package will be done with the geom geom_point(). Notice that the aesthetics
in the first layer now contain two variables.
mtcars %>%

ggplot(aes(x = cyl, y = mpg)) +
geom_point()

If you want to add a linear regression line, add an extra ‘geom’ (geom_smooth).
mtcars %>%

ggplot(aes(x = cyl, y = mpg)) +
geom_point() +
geom_smooth(method = "lm", se = F)

If you want to visualize different groups in the scatterplot, you can add extra variables to the aesthetics. In
addition to x and y, you can use color (the “outside” color of points), fill (the “inside” color of the points),
shape (of points) and size.
mtcars %>%

ggplot(aes(x = cyl,
y = mpg,
color = factor(gear)
)

) +
geom_point()

21

Faceting
For different subplots, use the layer facet_wrap(~) as default. This is another way to introduce a third
variable.
mpg %>%

ggplot(aes(x = factor(cyl), y = hwy)) +
geom_boxplot() +
facet_wrap(~ year)

22

5. Multivariate data analysis
3-way contingency tables with tabyl
Use the tabyl() function from the janitor package. With several adorning functions you can adjust the
table to your liking. You can force the table displaying the values ‘none’, ‘some’ and ‘many’ in the correct
order, by making sure the variable is stored as an ‘ordered factor’.
library(janitor)
mtcars %>%

tabyl(am, gear, cyl, show_na = FALSE) %>%
adorn_title("combined") %>% #both var names in the title
adorn_totals("col") %>% #column totals
adorn_totals("row") %>% #row totals
adorn_percentages("col") %>% #columnwise, rowwise (row), or total percentages (all)
adorn_pct_formatting(digits = 1) %>%
adorn_ns() #show the numbers of cases

Linear models
For the ordinary linear model, we use lm(). For a clear presentation of the regression table, we use the
tidy() function from the broom package.
library(broom)

multiple linear regression model (no interaction)
y = qsec, x1 = wt, x2 = cyl
data set: mtcars

model <- mtcars %>%
lm(qsec ~ wt + cyl, data = .)

the regression table
model %>%

tidy()

For an ANOVA table, we also use the tidy() function.
model %>%

anova() %>%
tidy()

To obtain the R-squared, we can use the summary() function.
out <- mtcars %>%

lm(qsec ~ wt + cyl, data = .) %>%
summary()

out$r.squared
out$adj.r.squared

To make plots with the residuals and/or the predicted values we can use the modelr package to paste
residuals and predicted values to the data frame:
library(modelr)

model <- mtcars %>%

23

lm(qsec ~ wt + cyl, data = .)

mtcars %>%
add_predictions(model) %>%
add_residuals(model) %>%
ggplot(aes(x = pred, y = resid)) +
geom_point()

linear mixed models
For the linear mixed model, we use the lmer() function from the lme4 package. Note that the output doesn’t
show p-values, nor residual degrees of freedom for fixed effects. This is for a good reason.
library(lme4)

mtcars %>%
lmer(qsec ~ wt + (1|gear), data = .) %>%
tidy()

When we have factors as fixed variables:
mtcars %>%

lmer(qsec ~ wt + factor(cyl) + (1|gear), data = .) %>%
anova() %>%
tidy()

If you want approximate p-values, you can use Satterthwaite’s degrees of freedom method, implemented in
the lmerTest package. The same method is used in SPSS.
library(lmerTest)
mtcars %>%

lmer(qsec ~ wt + (1|gear), data = .) %>%
summary()

For a residual plot, we can use similar syntax as for the linear model:
model <- mtcars %>%

lmer(qsec ~ wt + (1|gear), data = .)

mtcars %>%
add_predictions(model) %>%
add_residuals(model) %>%
ggplot(aes(x = pred, y = resid)) +
geom_point()

logistic regression
For a logistic regression model, we use the glm() function.
mtcars %>%

glm(am ~ wt, family = binomial, data = .) %>%
tidy()

Similarly for a Poisson regression.
mtcars %>%

glm(carb ~ wt, family = poisson, data = .) %>%

24

https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html

tidy()

Nonparametric tests
For a non-parametric test for comparing two or more groups, we use
airquality %>%

kruskal.test(Ozone ~ Month, data = .)

For a non-parametric test for repeated measures, we use
iris %>%

select(Sepal.Length, Petal.Length) %>%
as.matrix() %>%
friedman.test()

For Kendall’s tau, we use
library(VGAM)
kendall.tau(mtcars$mpg, mtcars$gear)

For Spearman’s rho, we use
library(Hmisc)

rcorr(mtcars$mpg, mtcars$disp, type = "spearman")

25

6. Psychometric analyses
In this chapter, you can find out how to run a factor analysis in R and how to run Classical Test Theory
analyses and Item Response Theory models in R.

For psychometric analyses, we use the packages: psych, CTT, Lambda4 and mirt.

Factor analysis

library(psych)

Before running a factor analyses, explore your data and check the following:

data_new %>%
KMO() # Kaiser-Meyer-Olkin measure

data_new %>%
cortest.bartlett() # Barlett’s sphericity test

data_new %>%
cor() # correlation matrix

Next, determine the number of factors. For this, you need to run a
Principal Component Analysis

eigenvalues for Kiaser's criterion

pca <- data_new %>%
cor() %>%
eigen()

eigenvalues <- pca$values

screeplot based on principal component analysis

using a ggplot:
tibble(component = 1:length(eigenvalues), eigenvalues) %>%

ggplot(aes(x = component, y = eigenvalues)) + geom_line() + scale_x_continuous(breaks = 1:length(eigenvalues))

OR using:
data_new %>%

scree(, factors = FALSE)

to run a factor analysis with two factors:
model_2f <- factanal(data_new, factors = 2, rotation = "varimax")

Running the previous code on a real data set, will not show you the results of the factor analysis. You need
to type in model_2f in the R console to see the results.

Please note that in the output of a factor analysis, a Chi square statistic is shown. This Chi square statistic
belongs to a test for the model fit. The null hypothesis for this test is: the model that is used (in the
example: a model with two factors) fits. A non-significant result is thus preferable, as we do not reject the
null hypothesis then. But, large sample sizes easily give significant results. Because of that, we would like
you to ignore this part of the output completely and focus on the interpretation of the factors instead.

26

Classical Test Theory analyses

library(CTT)
library(Lambda4)

analyze the data
results <- dataset %>%

as.matrix() %>%
itemAnalysis()

show Cronbach's alpha
results$alpha

show Cronbach's alpha if item removed (deleted),
p-values (=ItemMean), and item rest correlations (=pBis)
results$itemReport

Compute lambda 2
dataset %>% guttman() # lambda 3 = Cronbach's alpha

Item Response Theory models

library(mirt)

a 1-dimensional model with 2 parameters per item
out2 <- dataset %>%

mirt(., model = 1, itemtype = "2PL")

out2 # to see Akaike’s Information Criterion

a 1-dimensional model with 1 parameter per item
out1 <- dataset %>%

mirt(., model = 1, itemtype = "Rasch")

to extract the estimated parameters of a model:
par2 <- out2 %>%

coef(, IRTpars=T, simplify=T)

par2$items #to see the parameters

information plots
out2 %>%

itemplot(, item = 1, type = "info") #item information plot for item 1

out2 %>%
plot(, type = "info") #test information plot

assessing the item fit
out2 %>%

itemfit() #for all items

out2 %>%
itemfit(,empirical.plot = 6) #plot for item 6

27

	Introduction
	How to use this document?

	1. Introducing R and RStudio
	What is R?
	What is RStudio?
	Why R and RStudio at BMS?
	Installing R and RStudio on your laptop
	How to learn R?
	Terminology: working directory, console, script and more
	Data frames and data types
	Operators in R
	Some notes on writing readable scripts
	Downloading and activating R Packages
	R packages to be used at BMS
	Datasets in R-packages
	The `pipe' operator

	2. Handling data files
	Importing data: from .csv, .sav and other formats to R data frames
	Working with labelled data (mainly SPSS and SAV files)
	Creating data frames from scratch
	View data frames and parts of data frames: view, colnames and select
	Creating subsets of a data frame: select, filter and the use the assignment operator <-
	Dealing with missing data: na_if, is.na, na.rm, na.omit
	Renaming a variable in a data frame: rename
	Adding a new variable to an existing data frame: mutate
	Making sure variables have the correct type: from character to factor and from factor to ordered factor
	Adding a new variable from another datafile to an existing data frame: leftjoin
	Adding new data (observations) to an existing data file: add_row
	Recoding and changing variables in an existing data frame: recode and case_when
	Recoding single values of a variable into different values in a new variable
	Recoding a range of values of a variable into different values in a new variable: case_when

	Restructuring data files: creating long and broad format data frames using pivot_longer and pivot_wider

	3. Univariate data analysis and data visualization
	Summarizing numerical variables: mean, median, variation and standard deviation
	Frequency tables with janitor: tabyl
	Univariate graphs: creating bar charts, box plots and histograms using ggplot

	4. Bivariate data analysis and bivariate data vizualisation
	Contingency tables (a.k.a. crosstabs) with tabyl
	Box plots for different groups using ggplot
	Scatterplots with ggplot
	Faceting

	5. Multivariate data analysis
	3-way contingency tables with tabyl
	Linear models
	linear mixed models
	logistic regression
	Nonparametric tests

	6. Psychometric analyses
	Factor analysis
	Classical Test Theory analyses
	Item Response Theory models

